Computer Science 294 Lecture 22 Notes

Daniel Raban
April 6, 2023

1 Hardness of Approximation for Max-Cut and The Majority is Stablest Theorem

1.1 Proof sketch of the invariance principle

Let's finish our proof sketch of the invariance principle from last time.
Theorem 1.1 (Invariance principle). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a multilinear polynomial of degree d, i.e.

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} x_{i} .
$$

Let $X_{1}, \ldots, X_{n} \sim\{ \pm 1\}$ be independent random bits, and let $Y_{1}, \ldots, Y_{n} \sim N(0,1)$ be independent standard Gaussians. Then
$\left|\mathbb{E}\left[\psi\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right]-\mathbb{E}\left[\psi\left(f\left(Y_{1}, \ldots, Y_{n}\right)\right)\right]\right| \leq \frac{\left\|\psi^{(4)}\right\|_{\infty}}{24} \cdot 9^{d-1} \cdot \sum_{i=1}^{n} \operatorname{Inf}_{i}^{2}(f)\left(\mathbb{E}\left[X_{i}^{4}\right]+\mathbb{E}\left[Y_{i}^{4}\right]\right)$, where $\operatorname{Inf}_{i}(f)=\sum_{S \ni i} \widehat{f}(S)^{2}$.

Proof sketch of invariance principle. We want to show

$$
\mathbb{E}_{X_{1}, \ldots, X_{n} \sim\{ \pm 1\}}\left[\psi\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right] \approx \mathbb{E}_{Y_{1}, \ldots, Y_{n} \sim N(0,1)}\left[\psi\left(f\left(Y_{1}, \ldots, Y_{n}\right)\right)\right],
$$

so define the hybrids

$$
H_{i}=f\left(Y_{1}, \ldots, Y_{i}, X_{i+1}, \ldots, X_{n}\right)
$$

As before, it suffices to show that for all $i, \mathbb{E}\left[\psi\left(H_{i-1}\right)\right] \approx \mathbb{E}\left[\psi\left(H_{i}\right)\right]$. We can write

$$
f(x)=x_{i} D_{i} f(x)+E_{i} f(x),
$$

where $D_{i} f(X)$ and $E_{i} f(X)$ don't depend on X_{i}. Since H_{i} and H_{i-1} only differ in the i-th coordinate, we have

$$
H_{i}=Y_{i} D_{i} f\left(Y_{1}, \ldots, Y_{i-1} X_{i+1}, \ldots, X_{n}\right)+E_{i} f\left(Y_{1}, \ldots, Y_{i-1}, X_{i+1}, \ldots, X_{n}\right),
$$

$$
H_{i-1}=X_{i} D_{i} f\left(Y_{1}, \ldots, Y_{i-1} X_{i+1}, \ldots, X_{n}\right)+E_{i} f\left(Y_{1}, \ldots, Y_{i-1}, X_{i+1}, \ldots, X_{n}\right)
$$

Now write

$$
H_{i}=Y_{i} \cdot \Delta+U, \quad H_{i-1}=X_{i} \cdot \Delta+U,
$$

where

$$
U=E_{i} f\left(Y_{1}, \ldots, Y_{i-1}, X_{i+1}, \ldots, X_{n}\right), \quad \Delta=D_{i} f\left(Y, \ldots, Y_{i-1}, X_{i+1}, \ldots, X_{n}\right) .
$$

Now

$$
\left|\left|E\left[\psi\left(H_{i-1}\right)\right]-\mathbb{E}\left[\psi\left(H_{i}\right)\right]\right|=\left|\mathbb{E}\left[\psi\left(U+X_{i} \Delta\right)\right]-\mathbb{E}\left[\psi\left(U+Y_{i} \Delta\right)\right]\right|\right.
$$

Using the Taylor expansion of ψ around U,

$$
\begin{aligned}
& \leq \frac{\left\|\psi^{(4)}\right\|_{\infty}}{4!}\left(\mathbb{E}\left[\left(X_{i} \Delta\right)^{4}\right]+\mathbb{E}\left[\left(Y_{i} \Delta\right)^{4}\right]\right) \\
& \leq \frac{\left\|\psi^{(4)}\right\|_{\infty}}{4!}\left(\mathbb{E}\left[X_{i}^{4}\right] \mathbb{E}\left[\Delta^{4}\right]+\mathbb{E}\left[Y_{i}^{4}\right] \mathbb{E}\left[\Delta^{4}\right]\right)
\end{aligned}
$$

By Bonami's lemma, $\mathbb{E}\left[\Delta^{4}\right] \leq 9^{d-1} \mathbb{E}\left[\Delta^{2}\right]^{2}$. By Parseval's identity, $\mathbb{E}\left[\Delta^{2}\right]=\sum_{S \ni i} \widehat{f}(S)^{2}=$ $\operatorname{Inf}_{i}(f)$.

$$
\begin{aligned}
& \leq \frac{\left\|\psi^{(4)}\right\|_{\infty}}{4!}\left(9^{d-1}\left(\operatorname{Inf}_{i}(f)\right)^{2}+3 \cdot 9^{d-1}\left(\operatorname{Inf}_{i}(f)\right)^{2}\right) \\
& =\left\|\psi^{(4)}\right\|_{\infty} \frac{4}{4!}\left(9^{d-1} \operatorname{Inf}_{i}(f)\right)^{2}
\end{aligned}
$$

1.2 Hardness of approximation for Max-Cut

The Max-Cut problem is that given a graph, we want to label the vertices with +1 or -1 so that the number of edges between +1 and -1 vertices is maximized. To show that Max-Cut is hard to approximate, it suffices to design a dictator-vs-no-notable-coordinates test using " \neq " predicates such that

1. If f is a Dictator, then

$$
\mathbb{P}(\text { tester accepts } f) \geq \frac{1}{2}+\frac{1}{2} \rho,
$$

2. If f has no ε-notable coordinates (i.e. $\operatorname{Inf}_{i}^{(1-\varepsilon)}(f) \leq \varepsilon$ for all i), then

$$
\mathbb{P}(\text { tester accepts } f) \leq 1-\frac{\arccos (\rho)}{\pi}+\lambda(\varepsilon)
$$

where $\lambda(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
The test is as follows:

1. Pick a noise parameter $-1<\rho^{\prime} \leq 0\left(\right.$ think $\left.\rho^{\prime}=-\rho\right)$.
2. Pick a ρ^{\prime}-correlated pair $X, Y \sim\{ \pm 1\}^{n}$.
3. Accept if and only if $f(X) \neq f(Y)$.

With this test,

$$
\begin{aligned}
\mathbb{P}(\text { tester accepts } f) & =\mathbb{E}\left[\frac{1}{2}-\frac{1}{2} f(X) f(Y)\right] \\
& =\frac{1}{2}-\frac{1}{2} \operatorname{Stab}_{\rho^{\prime}}(f) .
\end{aligned}
$$

Now we analyze by cases:

1. If f is a dictator, then

$$
\mathbb{P}(\text { tester accepts } f)=\frac{1}{2}-\frac{1}{2} \operatorname{Stab}_{\rho^{\prime}}(f)=\frac{1}{2}-\frac{1}{2} \rho^{\prime} .
$$

2. If f has no ε-notable coordinates, we want to show that

$$
\frac{1}{2}-\frac{1}{2} \operatorname{Stab}_{\rho^{\prime}}(f) \leq 1-\frac{1}{\pi} \arccos (\rho)+\lambda(\varepsilon) .
$$

Rearranging this, we want to show that

$$
-\operatorname{Stab}_{\rho^{\prime}}(f) \leq 1-\frac{2}{\pi} \arccos (\rho)+2 \lambda(\varepsilon) .
$$

The Fourier expansion of the negative stability is

$$
\operatorname{Stab}_{\rho^{\prime}}(f)=-\underbrace{W^{0}}_{\leq 0}-\underbrace{\rho^{\prime} W^{1}(f)}_{\geq 0}-\underbrace{\left(\rho^{\prime}\right)^{2} W^{2}(f)}_{\leq 0}+\cdots
$$

Dropping the negative terms, it suffices to prove that

$$
\rho W^{1}(f)+\rho^{3} W^{3}(f)+\rho^{5} W^{5}(f)+\cdots \leq 1-\frac{2}{\pi} \arccos (\rho)+2 \lambda(\varepsilon) .
$$

This looks like the ρ-stability of f when we only take the odd part of f. Note that $f^{\text {odd }}$ is bounded because $f_{\text {odd }}=\frac{f(x)-f(-x)}{2}$, which is bounded for a boolean function f.

1.3 Majority is stablest

We will now prove the following theorem.
Theorem 1.2 (Majority is stablest, MOO). Let $f:\{ \pm 1\}^{n} \rightarrow[-1,1]$ be such that f is odd and $\operatorname{Inf}_{i}^{(1-\varepsilon)}(f) \leq \varepsilon$ for all i. Then, for all $0 \leq \rho \leq 1$,

$$
\operatorname{Stab}_{\rho}(f) \leq \underbrace{1-\frac{2}{\pi} \arccos (\rho)}_{=\lim _{n \rightarrow \infty} \operatorname{Stab}_{\rho}\left(\operatorname{MAJ}_{n}\right)}+2 \lambda(\varepsilon)
$$

where $\lambda(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
What is the analogous statement on Gaussian space?
Theorem 1.3 (Borrell '85). Let $f: \mathbb{R}^{n} \rightarrow[-1,1]$ with $\mathbb{E}[f(Z)]=0$, where Z is an n dimensional Gaussian distribution. Then for all $\rho \geq 0$,

$$
\operatorname{GStab}_{\rho}(f):=\mathbb{E}\left[f(Z) f\left(Z^{\prime}\right)\right] \leq 1-\frac{2}{\pi} \arccos (\rho)
$$

where $\left(Z_{i}, Z_{i}^{\prime}\right)$ are ρ-correlated Gaussians (independent of the other coordinates).
Recall Sheppard's theorem, which tells us that if $f(x)=\operatorname{sgn}\left(x_{1}+\cdots+x_{n}\right)$, then

$$
\operatorname{GStab}_{\rho}(f)=1-\frac{2}{\pi} \arccos (\rho)
$$

Proof of Majority is Stablest via Borrell's theorem. Given $f:\{ \pm 1\}^{n} \rightarrow[-1,1]$ where f is odd and $\mathbb{E}[f]=0$, think of f as a multilinear polynomial

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} x_{i} .
$$

We assumed that $\operatorname{Inf}_{i}^{(1-\varepsilon)}(f) \leq \varepsilon$ for all i. Using the polynomial interpretation of f,

$$
\begin{aligned}
\operatorname{GStab}_{\rho}(f) & =\mathbb{E}_{\left(Z, Z^{\prime}\right) \rho \text {-corr. }}\left[f(Z) f\left(Z^{\prime}\right)\right] \\
& =\sum_{S} \widehat{f}(S)^{2} \rho^{|S|} \\
& =\operatorname{Stab}_{\rho}(f)
\end{aligned}
$$

To use Borrell's theorem, we need to know that $f: \mathbb{R}^{n} \rightarrow[-1,1]$. On the Boolean domain, we need that for all $x \in\{ \pm 1\}$ that $f(x) \in[-1,1]$. Thus, we can hope that with high probability $f(Z) \in[-1,1]$ for $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ Gaussians.

Let $\bar{f}(z)=\operatorname{trunc}(f(z))$ be the truncated function, where

$$
\operatorname{trunc}(t)= \begin{cases}-1 & t \leq-1 \\ t & -1<t<1 \\ 1 & t \geq 1\end{cases}
$$

By Borell's theorem,

$$
\operatorname{GStab}_{\rho}(\bar{f}) \leq 1-\frac{2}{\pi} \arccos (\rho),
$$

so it suffices to show that $\operatorname{GStab}_{\rho}(\bar{f})$ is similar to $\operatorname{GStab}_{\rho}(f)$. We'll show that

$$
\mathbb{E}\left[(f(Z)-\bar{f}(Z))^{2}\right] \leq o_{\varepsilon}(1),
$$

which gives

$$
\begin{aligned}
\left|\operatorname{GStab}_{\rho}(f)-\operatorname{GStab}_{\rho}(\bar{f})\right| & =\left|\mathbb{E}\left[f(Z) f\left(Z^{\prime}\right)-\bar{f}(Z) \bar{f}\left(Z^{\prime}\right)\right]\right| \\
& \leq\left|\mathbb{E}\left[f(Z) f\left(Z^{\prime}\right)-f(Z) \bar{f}\left(Z^{\prime}\right)\right]\right|+\left|\mathbb{E}\left[f(Z) \bar{f}\left(Z^{\prime}\right)-\bar{f}(Z) \bar{f}\left(Z^{\prime}\right)\right]\right| \\
& \leq\left|\mathbb{E}\left[f(Z)\left(f\left(Z^{\prime}\right)-\bar{f}\left(Z^{\prime}\right)\right)\right]\right|+\left|\mathbb{E}\left[(f(Z)-\bar{f}(Z)) \bar{f}\left(Z^{\prime}\right)\right]\right|
\end{aligned}
$$

By Cauchy-Schwarz,

$$
\begin{aligned}
& \leq \sqrt{\mathbb{E}\left[f(Z)^{2}\right]} \sqrt{\mathbb{E}\left[\left(f\left(Z^{\prime}\right)-\bar{f}\left(Z^{\prime}\right)\right)^{2}\right.}+\sqrt{\mathbb{E}\left[\bar{f}(Z)^{2}\right]} \sqrt{\mathbb{E}\left[(f(Z)-\bar{f}(Z))^{2}\right.} \\
& =\sqrt{\sum_{S} \widehat{f}(S)^{2}} \sqrt{o_{\varepsilon}(1)}+\sqrt{\sum_{S} \widehat{f}(S)^{2}} \sqrt{o_{\varepsilon}(1)} \\
& =\sqrt{E\left[f(X)^{2}\right]} \sqrt{o_{\varepsilon}(1)}+\sqrt{E\left[f(X)^{2}\right]} \sqrt{o_{\varepsilon}(1)} \\
& \leq \sqrt{o_{\varepsilon}(1)}
\end{aligned}
$$

To prove the claim, define

$$
\psi(t)= \begin{cases}(t+1)^{2} & t<-1 \\ 0 & -1 \leq t \leq 1 \\ (t-1)^{2} & t>1\end{cases}
$$

$$
=\operatorname{dist}(t,[-1,1])^{2}
$$

Then

$$
\mathbb{E}[\psi(f(Z))]=\mathbb{E}\left[(f(Z)-\bar{f}(Z))^{2}\right]
$$

We know that $\mathbb{E}[\psi(f(X))]=0$. Can we get by the invariance principle that $\mathbb{E}[\psi(f(Z))] \leq$ $o_{\varepsilon}(1)$? This test function is not smooth enough, but we can slightly alter it. The idea is to apply some smal noise $\delta=\delta(\varepsilon)$, where $\delta \gg \varepsilon$ but $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0\left(\right.$ e.g. $\left.\delta=\frac{1}{\log \log (1 / \varepsilon)}\right)$. Set $g=T_{1-\delta} f$. From the assumption $\operatorname{Inf}_{i}^{(1-\varepsilon)}(f) \leq \varepsilon$, we get

$$
\begin{aligned}
\operatorname{Inf}_{i}(g) & =\sum_{S \ni i} \widehat{f}(S)^{2} \\
& =\sum_{S \ni i}(1-\delta)^{2|S|} \widehat{f}(S)^{2}
\end{aligned}
$$

Since $\delta \ll \varepsilon$,

$$
\begin{aligned}
& \leq \sum_{S \ni i}(1-\varepsilon)^{|S|} \widehat{f}(S)^{2} \\
& \leq \sum_{S \ni i}(1-\varepsilon)^{|S|-1} \widehat{f}(S)^{2} \\
& \leq \varepsilon
\end{aligned}
$$

We want to show that $\operatorname{Stab}_{\rho}(f) \approx \operatorname{Stab}_{\rho}(g)$. We have

$$
\begin{aligned}
\left|\operatorname{Stab}_{\rho}(f)-\operatorname{Stab}_{\rho}(g)\right| & =\left|\sum_{S} \widehat{f}(S)^{2} \rho^{|S|}\left(1-(1-\delta)^{2|S|}\right)\right| \\
& \leq \max _{k \in\{0, \ldots, n\}} \rho^{k}\left(1-(1-\delta)^{2 k}\right) \\
& \leq \max _{k} \rho^{k} \cdot 2 k \cdot \delta
\end{aligned}
$$

The next step is to turn g into a low degree polynomial by removing its high degree parts. Set $h:=g^{\leq 1 / \delta^{2}}(x)$. Then h is odd, so $\mathbb{E}[h]=0$. Overall, we have

$$
\operatorname{Stab}_{\rho}(f) \approx \operatorname{Stab}_{\rho}(h)=\operatorname{GStab}_{\rho}(h) \approx \operatorname{GStab}_{\rho}(\bar{h}) \leq 1-\frac{2}{\pi} \arccos (\rho)
$$

The step $\operatorname{GStab}_{\rho}(h) \approx \operatorname{GStab}_{\rho}(\bar{h})$ comes from

$$
\begin{aligned}
\mathbb{E}_{Z \sim N(0,1)^{n}}[\psi(h(Z))] & \approx \mathbb{E}_{X \sim\{ \pm 1\}^{n}}[\psi(h(X))] \\
& =\mathbb{E}_{X}\left[(h(X)-\bar{h}(X))^{2}\right] \\
& \leq \mathbb{E}_{X}\left[(h(X)-g(X))^{2}\right] \\
& \leq \sum_{|S|>1 / \delta^{2}} \widehat{f}(S)^{2} \cdot(1-\delta)^{2|S|} \\
& \leq(1-\delta)^{1 / \delta^{2}} \\
& \leq \delta .
\end{aligned}
$$

The error in the invariance principle is $\leq \frac{\|\psi\|_{\infty}}{24} 9^{1 / \delta^{2}} \cdot 4 \cdot \sum_{i=1}^{n} \operatorname{Inf}_{i}(h)^{2}$. Using the fact that $\operatorname{Inf}_{i}(h) \leq \varepsilon$ and $\varepsilon \ll \delta$, this is $O\left(9^{1 / \delta^{2}} \cdot 1 / \delta^{2} \cdot \varepsilon\right)$, which is $\leq \varepsilon^{0.99}$.

We should think of this as the kind of proof which has a central idea and proceeds by trial and error.

