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1 Hardness of Approximation for Max-Cut and The Major-
ity is Stablest Theorem

1.1 Proof sketch of the invariance principle
Let’s finish our proof sketch of the invariance principle from last time.
Theorem 1.1 (Invariance principle). Let f : R™ — R be a multilinear polynomial of degree

d, i.e.
f@)=>" 19 ]]

SC[n] i€s

Let X1,..., X, ~ {£1} be independent random bits, and let Y1,...,Y, ~ N(0,1) be inde-
pendent standard Gaussians. Then

(4) n
B (X0 X))~ Bl ,va)) < 00 S iz @i + By,
i=1
where Inf;(f) =3 g5, F(8)2.
Proof sketch of invariance principle. We want to show
Ex,,. xo~fe 1 O (X1, Xo))] = By, yenvon [0(F (Y1, -2 Ya))],

so define the hybrids
Hi :f(}/la"'u}/i;Xi-i-l,...,Xn).

As before, it suffices to show that for all ¢, E[¢)(H;_1)] ~ E[¢)(H;)]. We can write
f(@) =ziDif(x) + Eif (),

where D; f(X) and F;f(X) don’t depend on X;. Since H; and H;_; only differ in the i-th
coordinate, we have

Hl' = Y;le(Yi, .. ,YVZ‘,lXiJrl, . ,Xn) —+ Ezf()/l, .. 7Yt£717Xi+1a .. ,Xn),



-Hi—l = XZDZf(YL . '7}/;—1Xi+17 cee 7X’n,) + EZf(Y17 cee 7}/;'—17X’i+17‘ . '7Xn)7

Now write

H, =Y -A+U, H_1=X;,-A+U,

where
U=FE;f(Y1,....Yi-1, Xit1,---, Xn), A=D;f(Y,....Yi 1, Xiy1,..., Xpn).
Now

1B (Hi1)] = E[p(Hi)l| = |E[p (U + X;A)] = E[p(U + YiA)]]
Using the Taylor expansion of ¥ around U,
(4)
_ 9l
- A4l
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By Bonami’s lemma, E[A] < 9971 E[A%]2. By Parseval’s identity, E[A%] = Y., F(8)2 =

(E[(X:A)] +E[(YiA)Y)

(E[X]E[AY] + E[Y;]E[A)

Hw
41

= |l 4>||oo (97 Infi (1)), m

e (914 1, (7))2 + 3. 99 1nk, (1))

1.2 Hardness of approximation for Max-Cut

The Max-Cut problem is that given a graph, we want to label the vertices with +1 or
—1 so that the number of edges between +1 and —1 vertices is maximized. To show that
Max-Cut is hard to approximate, it suffices to design a dictator-vs-no-notable-coordinates
test using “#” predicates such that

1. If f is a Dictator, then

1 1
P(tester accepts f) > B + PIZ

2. If f has no e-notable coordinates (i.e. Infgl_g)(f) < ¢ for all i), then

arccos(p)

P(tester accepts f) <1 — + A(e),

s

where A\(e) — 0 as ¢ — 0.

The test is as follows:



1. Pick a noise parameter —1 < p’ <0 (think p’ = —p).
2. Pick a p'-correlated pair X, Y ~ {£1}"™.
3. Accept if and only if f(X) # f(Y).

With this test,

P(tester accepts f) =E [1 - 1f(X)f(Y)]

2 2
1 1
== 5 - 5 Stabp/(f)
Now we analyze by cases:
1. If f is a dictator, then
1 1 1 1
P(test ts f) == — = Staby(f) == — =p.
(tester accepts f) 575 aby (f) 5~ 5P
2. If f has no e-notable coordinates, we want to show that
1 1 1
375 Staby (f) < 1 — —arccos(p) + A(e).
T

Rearranging this, we want to show that

2
— Stab,y(f) <1 — —arccos(p) + 2A(e).
T
The Fourier expansion of the negative stability is
Staby (f) = = W2 = p'W(f) = (0"’ W2(f) + - -
<0 >0 <0

Dropping the negative terms, it suffices to prove that

pW(f) + pPPW2(f) + pPWP(f) + - < 1— %arceos(p) + 2X\(g).

This looks like the p-stability of f when we only take the odd part of f. Note that

f°44 is bounded because foqq = M, which is bounded for a boolean function
I



1.3 Majority is stablest

We will now prove the following theorem.

Theorem 1.2 (Majority is stablest, MOO). Let f: {£1}" — [—1,1] be such that f is odd
and Infglfs)(f) <€ for alli. Then, for all0 < p <1,

2
Stab,(f) < 1— —arccos(p) +2A(e),
T
—_————
=limp ;o0 Stab,(MAJ,)

where A(g) — 0 as € — 0.

What is the analogous statement on Gaussian space?
Theorem 1.3 (Borrell '85). Let f : R® — [—1,1] with E[f(Z)] = 0, where Z is an n-
dimensional Gaussian distribution. Then for all p > 0,

GStab, (f) = E[f(2)§(7)] < 1~ = axccos(p),

where (Z;, Z]) are p-correlated Gaussians (independent of the other coordinates).

Recall Sheppard’s theorem, which tells us that if f(z) = sgn(zy + --- + x,), then

GStab,(f) =1— 2 arccos(p).
™

Proof of Majority is Stablest via Borrell’s theorem. Given f : {+1}" — [—1,1] where f is
odd and E[f] = 0, think of f as a multilinear polynomial

f@)y=">" FS) [

SCln] i€s

We assumed that Infgl_a)( f) < e for all i. Using the polynomial interpretation of f,

To use Borrell’s theorem, we need to know that f : R” — [—1,1]. On the Boolean domain,
we need that for all x € {£1} that f(z) € [-1,1]. Thus, we can hope that with high
probability f(Z) € [-1,1] for Z = (Z4, ..., Z,) Gaussians.



Let f(z) = trunc(f(z)) be the truncated function, where

-1 t< -1
trunc(t) =<t —1<t<1

1 t>1.

Arane (£2))

—H e

GStab,(f) <1-— 2 arccos(p),

s

By Borell’s theorem,

so it suffices to show that GStab,(f) is similar to GStab,(f). We’ll show that

E[(f(2) = [(2))] < 0:(1),
which gives

| GStab,,(f) — GStab,(f)| = |E[f(2)

By Cauchy-Schwarz,

< VET@PIWEIS(2) - F(2)) + \EF 22 ES(2) - F(2))
=[S ASRVodl+ 5 s odl

S
= \/E )2V 0:(1) + VE[f(X)? /0 (1)
< 05(1)
To prove the claim, define
(t+1)2 t< -1
P(t) =<0 -1<t<1
t—12% t>1



= dist(t, [-1,1])?
Y(¥) 2
A\ (e

1 2 Y

('Jc&ﬂ

Then B
E[y(f(2))] = E[(f(2) - f(2))*.

We know that E[¢(f(X))] = 0. Can we get by the invariance principle that E[)(f(Z))] <
0:(1)? This test function is not smooth enough, but we can slightly alter it. The idea is
to apply some smal noise § = (&), where 6 > e but 6 - 0ase — 0 (e.g. 6 = m).

Set g =T1_sf. From the assumption Infgl_a)(f) < g, we get

Infi(g) = Y _ J(S

e

— Z 2|5\f

SEY

<Y (1 -e)lf(s)

S§31

< Y- sy
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Since § < ¢,

We want to show that Stab,(f) ~ Stab,(g). We have

| Stab,(f) — Stab,(g)| = Zf S)? |5\ 5)2\5\)

< 1—(1—6)%
ke{{%f}fn}p( ( ))

Sm]?xp -2k -6



< 0(9)

The next step is to turn ¢ into a low degree polynomial by removing its high degree
parts. Set h := g</%*(z). Then h is odd, so E[h] = 0. Overall, we have

Stab,(f) ~ Stab,(h) = GStab,(h) ~ GStab,(h) <1 — 2 arccos(p).

The step GStab,(h) ~ GStab,(h) comes from
Eznonn[¥(h(2))] = Exfz1yn ¢ (R(X))]
= Ex[(h(X) — h(X))?]
< Ex[(h(X) — g9(X))’]
< > AP (1-0)H
1S|>1/62
<(1- 5)1/62
<.

The error in the invariance principle 2is < %91/ 2 .4. > Inf;(h)?. Using the fact that
Inf;(h) < e and € < 0, this is O(9'/9" - 1/62 - ¢), which is < 09, O

We should think of this as the kind of proof which has a central idea and proceeds by
trial and error.
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